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ABSTRACT

Particle drag models, which capture macro viscous and pressure effects, have been

developed over the years for various flow regimes to enable cost effective simulations

of particle-laden flows. The relatively recent derivation by Maxey and Riley has

provided an exact equation of motion for spherical particles in a flow field based on the

continuum assumption. Many models that have been simplified from these equations

have provided reasonable approximations; however, the sensitivity of particle-laden

flows to particle drag requires a very accurate model to simulate. To develop such

a model, a 2D axisymmetric Navier-Stokes direct numerical simulation of a single

particle in a transient, shock-driven flow field was conducted in the hydrocode FLAG.

FLAG’s capability to run arbitrary Lagrangian-Eulerian hydrodynamics coupled with

solid mechanic models makes it an ideal code to capture the physics of the flow field

around and in the particle as it is shock-accelerated – a challenging regime to study.

The goal of this work is twofold: to provide a validation for FLAG’s Navier-Stokes and

heat diffusion solutions, and to provide a rationale for recent experimental particle

drag measurements.

vii



Chapter 1

Introduction

The motivation for this work comes from a series of experiments from the Extreme

Fluids Team at Los Alamos National Laboratory. It has been observed, with pre-

viously unmatched experimental sophistication, that the drag experienced by small

particles, when accelerated by a shock wave, is much higher than previous models

predict. This result gave motivation to run a direct numerical simulation of the

shock-accelerated particle while resolving the material of both the particle and the

gas. The experiments were run using the horizontal shock tube facility running a

Mach 1.3 shock into ambient conditions of the lab. The laboratory being located in

Los Alamos, New Mexico requires less of the driver, and the piston-based shock tube

they run is preferable to one that uses diaphragms. The experiments used 4μm diam-

eter nylon particles and tracked them with a syncronized camera-laser system with

a time resolution of 500ns. The reader is encouraged to view the work performed to

gain the best understanding of the experiment to be replicated via simulations here

[1].

From here, the governing equations are presented, followed by a description of the

hydrodynamic instability that a better knowledge of particle drag attempts to shed

light on. Then applications and models are described.
1



1.1 Governing Equations

The behavior of fluids often has the potential to be chaotic and difficult to describe.

The mathimatical description of fluid mechanics comes from two conservation laws,

the second law of thermodynamics, a constitutive relationship, and an equation of

state. Conservation laws, as a result of Noether’s theorem, are a result of symmetries,

or invariants, of the action in the system. All equations are derived from applying

the conservation laws to finite control volumes. Firstly, the principle of momentum

conservation, which is a result of the symmetry of linear and rotational translations

in space, yields Cauchy’s first law of motion.

ρ
dv

dt
= div(σ) + ρf (1.1)

While very descriptive, this equation is far from well-posed as the stress tensor

σ and velocity vector v add nine unknown quantities to the problem while only

providing three equations. Losing generality of the equations, but progressing towards

a well-posed problem, the following constitutive relationship is introduced.

σ = −pI + τ

τ = µ(−
2

3
I+ grad(v) + grad(v)T )

(1.2)

Implicitly in this relationship, isotropy is assumed in the fluid. This assumption is

appropriate for almost all fluids with few exceptions [2]. Furthermore, it is imposed in

this relation that the bulk viscosity is zero, which is commonly known as the Stokes

assumption, and equates the mechanical pressure to the thermodynamic pressure.

This assumption is appropriate for flows that are free from extremely large rates of

change in specific volume. Substituting the relation into Cauchy’s first law gives the

familiar Navier-Stokes momentum equations for a compressible fluid.
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ρ
dv

dt
= −grad(p) + div(µgrad(v)) +

1

3
grad(µdiv(v)) (1.3)

Conservation of energy is the next law to consider, and is a result of the symmetry

of translations in time. This law provides two equations instead of one because of

Einstein’s equivalence of mass and energy, combined with the fact that the two will

not change forms from one to another in this application. Conservation of mass is

given as follows.

dρ

dt
+ div(ρb) = 0 (1.4)

Conservation of energy coupled with the fact that heat is a form of energy is

the first law of thermodynamics. This principle applied to a continuum may be

represented as follows.

dE

dt
= qSUR=>SY S − σ : D

ρf · v + ρv ·
dv

dt
+ ρ

d(Tcv)

dt
= div(κgrad(T )) + pdiv(v) + µΦDIS

ΦDIS = grad(v) : grad(v) + grad(v) : grad(v)T −
2

3
div(v)2

(1.5)

Here, the work from a pressurized fluid expanding is generalized as the double

inner product of the Cauchy stress tensor and the velocity gradient tensor. This in-

cludes the volume expansion work, but also includes work that is done due to shearing

forces. In compressible fluids this component is usually negligibly small, however in

ductile solids it has the potential to be the dominating component. Oftentimes when

considering compressible flow, viscous diffusion is negligible in comparison to the other

forces in the momentum equation, and the Navier-Stokes equations are transformed

into the Euler fluid momentum equations. Even though the energy equation is less

sensitive to inclusion of the viscous terms, it is important when solving the Navier-

Stokes equations that viscosity is still considered in both the energy and momentum

3



equations. Otherwise the solution potentially fails to follow normal shock relations.

The second law of thermodynamics is used as a condition to weed out solutions to

these equations that do not have physical meaning to them. This is refered to as the

entropy condition and is mostly utilized in the numerical solution of the equations. In

reality, shocks steepen as time goes on, becoming a spacial discontinuity of properties.

One of the potential solutions that satisfy the equations will diffuse the length in

which properties change over, and reports an incorrect wave velocity. The second

law of thermodynamics dismisses this solution as invalid. It is worth noting that all

variables with diffusion terms, i.e. those with μ and κ attached to them, must be

positive and equated to a positive time rate of change of the correspondant variable

for the second law to count it as a valid solution. This guarantees that heat does

not travel from hot to cold spontaneously, and that heat will not convert entirely to

kinetic energy. These are the Kelvin and Planck descriptions of the second law of

thermodynamics, respectively. This is clearly the case in the momentum equation,

but is less clear with the viscosity term in the energy equation because of the negative

divergence squared term. The entire expression that is multiplied by the viscosity in

the energy equation may be reduced to a sum of squares, thus guaranteeing that it

is always positive. Because this law is not built on the conservation of a variable,

it cannot be used to make the problem well-posed. However, it can be used to give

insights to solutions that may not be physical, and why they exist.

It is important to note that in all differential equations presented here, the deriva-

tives are taken constant with the material. From this, the chain rule must be applied,

and in doing this it becomes explicit that the equations are nonlinear. This is unsur-

prising as the nature of fluids is often chaotic, which is consistent with the behavior of

nonlinear dynamic systems. Unfortunately, nonlinear equations are not easily solved,

and the fact there are six coupled equations constrains analytical solutions to very

simple problems that do not provide many insights to the relevant physics. In order
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to increase one’s understanding of problems that have such complicated governing

equations, oftentimes numerical solution is a powerful method.

It is worth noting that the validity of the Navier-Stokes equations, while in theory

should describe the behavior of fluids perfectly within the continuum assumption,

should not always be held as sacrosanct, and is still debated in the mathematical

community. A proof that the Navier-Stokes equations either yield or do not yield

smooth and unique solutions is one of seven millennium problems proposed by the

Clay mathematical institute.

1.2 Shock-Driven Multiphase Instability

The shock-driven multiphase instability (SDMI), like all hydrodynamic instabilities

(HIs), is a mechanism in which flow transitions from laminar to turbulent. The

SDMI is an instability that, while not describable by a linear stability analysis

like the Rayleigh-Taylor instability or the Kelvin-Helmholtz instability, is extremely

widespread in nature. In addition to this fact, it is also very early in its stages of

research and not much is known about its behavior. The SDMI appears in many

human-created designs and is often the driving mechanism for the successful oper-

ation of the design. For example, in scramjet engines the liquid fuel particles are

accelerated and mixed extremely quickly by incoming supersonic air. The SDMI is

one of the ways that has the potential to describe the mixing of the fuel with the

air. Additionally, in chemical weapons, it is always important to see where the haz-

ardous material lands. These weapons typically work by detonating an explosive

which propels a liquid, hazardous material.

The SDMI is a HI that necessarily has at least two phases present: One that is

compressible, and the other that is either in a solid or liquid state, in the form of

particles. The shock passes through the compressible phase, which holds the particles
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in it as well. The region where particles are present may be treated as the region

of larger density in the RMI [3]. This is due to the fact the density of the particles

is always larger than that of the compressible phase. The RMI analogy becomes

perfect as the diameters of the particles becomes infinitesimal. This fact is useful

because continuum models that describe the particle kinematics break down as the

diameters approach the mean-free path of the gas. The non-dimensional parameter

that describes the jump in density at the interface for all of these HIs is known as

the Atwood number. Unlike most non-dimensional parameters, the Atwood number

does not come from the Buckingham-Π theorem but naturally appears in a first-order

analysis of the RTI and RMI.

At =
ρ1 − ρ2

ρ1 + ρ2
(1.6)

Here, ρ1 is the density of the fluid within the interface and ρ2 is the density of the

fluid outside the interface. Notice that, unlike most non-dimensional numbers, that

it is possible to have a negative Atwood number. The physical meaning of this is a

morphology development in the opposite direction. The equivalent parameter that is

used in the SDMI is the effective Atwood number, which is defined in a similar way,

except ρ1 is the ratio of the sum of the mass inside a representative volume element

inside the interface to the volume it occupies and ρ2 is the same for the potentially

multiphase mixture outside the interface. These densities are called the effective

densities, because they attempt to reduce the complexity of the SDMI to the RMI

by deeming what phase the mass is in as negligible. While this analogy exists, the

mechanism by which the instability develops is entirely different. The RMI deposits

vorticity via the baroclinic term in the vorticity equation, which is a result of taking

the curl of the Navier-Stokes equations. The baroclinic term exists when there is a

misalignment between the gradients of pressure and density, and will only exist as the

shock passes over the interface. This effectively deposits all vorticity instantaneously.
6



The SDMI deposits vorticity because of the finite amount of time for the particles

to accelerate into the post-shock flow. The areas that have more particles for the

fluid to travel through will lose more of its momentum to the particles than the areas

with fewer particles. This creates shearing in the flow, which drives a fluid system

with a large enough Reynold’s number to turbulence. A lot of progress towards

understanding these HIs has been made in the past century, but much work is still

left.

1.3 Eulerian and Lagrangian Descriptions of Flow

In the field of continuum mechanics, it is beneficial to be able to describe kinematics

in several ways. This is simply because it is often easier to describe certain motions

in one way compared to another. The two ways that one may describe the kinematics

of a continuum are a spacial, or Eulerian discription and a material, or Lagrangian

description. The names of each of these descriptions come from the great scientists

and mathematicians Leonhard Euler and his student Joseph Lagrange for their con-

tribution to the subject. When following an Eulerian description of a continuum,

the changes of properties at specified locations in space are observed while in a La-

grangian description the material is tracked. The mathematical representation of the

Eulerian and Lagrangian descriptions are given respectively as follows.

v = v(x, t)

T = T (x, t)

(1.7)

v = v(X, t)

T = T (X, t)

(1.8)

Here, x is the position of the material in the current configuration and X is the

7



location of the material in the reference configuration. Note, that the governing

equations that were previously presented were done so in an Eulerian description, as

special treatment was taken to consider the material derivative. Governing equations

in Lagrangian form are less common to see, especially for fluid mechanics. This

is because in fluid mechanics, a short time after tracking the material, the current

configuration potentially will not even slightly resemble the reference configuration.

The Lagrangian conservation equations describe the motion of a continuum in terms

of reference properties, compared to the changing properties observed at fixed points

in the laboratory reference frame. Everything considered, being able to track the

material of the fluid is often advantageous. The numerical methods used in this work

uses a combination of the two kinematic descriptions, and has additional benefits and

setbacks specific to it. These will be discussed later in greater detail.

1.4 Applications and Models

Particle drag is widespread in physical phenomena with parameter scales that span

several orders of magnitude. For example, in the Crab Nebula particles can be seen

in motion as electromagnetic radiation and gravity interact with them. Particles in

chemical weapons are deformed and broken up by a blast wave, such that it is difficult

to detect where they will land. Rotating detonation engines typically introduce liquid

fuel particles ahead of a detonation wave to break them up, evaporate them, and burn

them to perpetuate their thermodynamic cycle. All situations described here benefit

from a better understanding of the shock-driven multiphase instability (SDMI). The

SDMI is a hydrodynamic instability that is studied by several groups [3, 4], and exists

due to the non-zero equilibration time of the solid or liquid particles. The equilibration

time is a function of the particle and post-shock fluid’s material properties, and will

give a distance the particle will lag by, and the momentum it will take from the flow.
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Fully understanding the drag experienced by shock-accelerated solid particles is the

next step in understanding the fundamental physics and characteristic parameters of

the SDMI, and in closing the larger problem of deformation and breakup in these

situations.

The governing equations for this problem are a coupled set of nonlinear partial

differential equations for both the solid and fluid regions. In SDMI simulations, typ-

ically thousands or millions of particle parcels 0 are present [4], and these equations

cannot be used to resolve a cloud of particles in flow. This is due to the compu-

tational cost associated with resolving the huge range of relevant length scales. A

simplification of these equations may be attributed to the scientists Maxey and Riley,

for their rederived form of the Basset-Boussinesq-Oseen equations [5]. This reduces

the complexity of the equations to be solved to a single nonlinear integro-differential

equation, by assuming the particle to be rigid and the fluid to be Newtonian.

Still, applying this equation to many particles becomes unfeasible. Models are

typically implemented as a solution to this. These models are ad hoc methods that

do not necessarily rely on physics, but instead try to predict the outcome based on

empirical data. Models that are pertenent in this application are for heat transfer and

drag on a sphere. Many have been proposed over the past two centuries [6, 7, 8, 9],

all while the complexity and parameter space continue to grow. The model of Clift

and Gauvin [7], given by equation 1.9, has been a standard for decades.

CD =
24

ReD

(

1 + 0.15Re0.687D

)

+ 0.42

(

1 +
42500

Re1.16D

)

−1

(1.9)

This model is accurate for applications where compressibility is not a strong factor,

but for particles in high speed gas flow, the incompressible models will under-predict

the drag as stagnation pressure increases with the Mach number, along with many

other nonlinear effects. One model that incorporates the Mach number into its pa-

rameter space is that of Parmar et al. [6]. This model uses both the Reynolds and
9



Mach numbers as inputs to yield the drag coefficient of the particle via a method

of interpolating polynomials. Both of these models are considered in this work as a

comparison to simulation results.

Models have been proposed for evaluating the heat transfer from spheres exposed

to exernal flow. Because particles are often spherical in geometry, these models are

able to determine heat transfer to and from particles with good accuracy. The model

considered for this work is the well-validated model of Whitaker [9]. This model is

given by equation 1.10, and takes into consideration the differences of temperature-

dependent viscosity in between the surface of the particle and the free stream. All

properties except for the viscosity at the surface of the particle are evaluated at

the freestream temperature. This is atypical, as many models evaluate properties

at the film temperature, which is defined as a mean of the surface and freestream

temperatures.

NuD = 2 + (0.4Re
1/2
D + 0.06Re

2/3
D )Pr0.4

(

µ

µS

)1/4

(1.10)

NuD is the particle Nusselt number, ReD is the particle Reynold’s number,and

μand μS are the air viscosities evaluated at the freestream and particle surface, re-

spectively. Experiments showed that, for a given set of flow and particle parameters,

drag correlations severely under-predict the actual drag. This was measured by track-

ing particle positions with a high-speed camera as the particle traversed down a shock

tube. The simulations conducted in this work were done so with the intent to pose an

explanation to anomalous particle kinematic measurements from the Extreme Fluids

team at Los Alamos National Laboratory (LANL) [10].
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Chapter 2

Methods and Environment

2.1 FLAG

FLAG was the environment selected to simulate the shock-accelerated particle in this

study, and is an arbitrary Lagrangian Eulerian (ALE) code. ALE codes provide the

material-capturing abilities of Lagrangian codes, while also giving the robustness as-

sociated with Eulerian codes. They are executed by first solving the conservation laws

while tracking the material, such that the mesh becomes deformed, then remapping

the mesh using an optimization method. This step is necessary to prevent the mesh

from tangling in regions of high shear strain rates, and to improve the quality of the

solution. The mesh optimizer that was found to perform best, considering efficiency

and effectiveness, was a condition number-based method. This method attempts to

remap the mesh such that it returns cells that have been sheared back to rectangu-

lar. It is one of the more robust mesh optimizers available for this application with

minimal iterations necessary. Material is advected through volume boundaries in this

remapping step, as the mesh has no effect on the physics being solved. This process

is then repeated in a time-marching manner.
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FLAG solves hydrodynamics explicitly, such that it is limited by a CFL condition.

FLAG uses a predictor-corrector method for time integration to yield a second-order

solution. The cell advection is calculated using the Flux-Corrected Transport method

of Boris and Book [11], to give second-order accuracy in space. FLAG is currently

developed at Los Alamos National Laboratory, and is capable of running on a fully

unstructured mesh in both two and three dimensions. It additionally has the capa-

bility to capture shocks via artificial viscosity. Several models for artificial viscosity

exist, but the one used for this work was the modified Barton viscosity. Optional

treatments are available in FLAG to smooth the velocity gradient tensors. This work

utilizes the t0he hourglass treatment, which acts to smooth the differences between

zone and side velocity gradient tensors. FLAG is also a highly scalable code, and

is easily capable of running on tens of thousands of processers at a time. The con-

servation equations that can be solved with FLAG now include viscous and thermal

diffusivity effects. The viscosity is capable of being evaluated using Sutherland’s law

(equation 2.1) [12]

µ

µ0

=

(

T

T0

)1.5
T0 + 110.4

T + 110.4
(2.1)

The viscosity of the air, μ is calculated as a function of the temperature, T given a

reference viscosity μ0 measured at a given temperature T0. All capabilities described

here make FLAG ideal for tracking the motion of a shock-accelerated particle, while

resolving the heat transfer and mechanical response of the particle due to the shock.

2.2 Ingen

While FLAG has a built in mesh generator, Ingen is capable of generating meshes

that are more intricate and often better suited for simulations. Ingen is a Python li-

brary that has the ability to construct rectangular-structured, radial-structured, fully
12



unstructured, and combination meshes from a command line interface. Ingen, like

FLAG, is also a code that is under development at LANL. Since its start, its opera-

tion has been overseen by the Setup team. The domain can be optionally subdivided

into regions where different meshing rules may be imposed. Voronoi tesselations and

Delaunay triangulation are supported as unstructured meshing rules. The Delaunay

triangulation works on a set of discrete points when no point lies inside the circum-

scribed circle of any triangle. The Voronoi tesselation is the mathematical dual of

the Delaunay triangulation of a point set. Furthermore, functions for dendritic dere-

finement are suppored within Ingen. This work makes use of rectangular-structured,

radial-structured, and Voronoi tesselation meshes to resolve the domain. Dendritic

derefinement is implemented in both the rectangular and radial structured meshes.

The finalized mesh is exported as an x3d file so that it can be imported into FLAG.

2.3 Simulation Domain

Before simulating the shock-accelerated particle, the computational domain had to

be built. It was decided that the three dimensional problem was to be reduced to

a two dimensional axisymmetric one to reduce the computational burden associated

with solving the equations in three dimensions. In this decision, the assumption of

perfect symmetry was imposed, however the Reynolds number for the problem was

low enough (Re = 40.8) that turbulence is not expected to onset, and therefore three

dimensional effects are not expected to be present. This assumption will be checked

in future work.

Kinematic measurements of the 4 μm particles were taken by the Extreme Fluids

team [13] with given ambient conditions of the lab, the shock strength, and the particle

properties also provided. Post shock properties are computed with the shock tube

relations, given by Anderson [14], which derive from conservation of mass, momentum,
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and energy for an ideal, calorically perfect gas. The particle is modeled as an elastic

solid, with the yield strength given as an input to see the deformation, and possibly

failure, of the particle.

This information, coupled with the post shock properties of the flow given in

table 2.1, and the advertised particle diameters of four μm provides all necessary

information to set up the simulation. The domain was built as rectangular with three

wall boundary conditions and one inflow boundary condition. Because Lagrangian

codes struggle when dealing with outflow boundary conditions, the domain had to

be extended in the streamwise direction such that the reflected shock would not

interfere with the accelerating particle. The distance was calculated using the initial

and reflected wave speeds so that the particle could reach a reasonable percentage

of the post-shock flow velocity. The downstream domain was derefined by a factor

of sixteen to reduce the computational cost without losing important physics of the

problem. The width of the domain was constrained to be ten times the radius of

the particle in an attempt to avoid reflecting boundary effects. The fluid domain

was meshed to be mostly square-structured with a transition region from the particle

that is resolved with a Voronoi tessellation and a radial-structured mesh. These

descriptions are illustrated in figure 2.1.

A Delaunay triangulation pattern was attempted to resolve the transitional region,

but when the triangular cells deform as the simulation runs, the volume of each cell

cannot be held constant by altering another degree of freedom, and the pressure

in the cell artificially changes as a result. The mesh constructed with Ingen used

both structured and unstructured components. This was done with the intent of

building a mesh that would be robust as resolution increased while the meshing rules

stayed the same. The sound speed in the solid region is much larger relative to the

fluid region, so the CFL limitation typically occurs within the particle. Small cells

zones in the interior of the particle will drive the time step to be extremely small
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Figure 2.1: Simulation domain and meshing strategies
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Table 2.1: Conditions for a Mach 1.3 Shock

Gas Variables Pre-shock Post-shock
T (K) 298.4 351.31
p (kPa) 78.05 140.92
ρair (kg/m

3) 0.911 1.397
V(m/s) 0 152.2
μair(μPa*s) 18.21 20.80
dparticle (μm) 4.0 –
ρp (kg/m3) 1140 –

kp (W/(m*K)) 0.25 –
cv, p (J/(kg*K)) 3650 –

values unless intentional action is taken to prevent this. The mesh in the particle is

dendritically derefined by a factor of four to prevent cells from shrinking and resulting

in an unnecessarily small time step. A small region of high resolution is present along

the rim of the particle to have mesh continuity at the boundary for calculation of the

fluid stresses at the boundary. The particle is resolved with a rectangular-structured

mesh so mesh stiffeners may be used in conjunction with the hydrodynamics to treat

stress deviators.
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Chapter 3

Results and Discussion

3.1 Knudsen Number Effects

The Knudsen number is the figure of merit when determining whether the continuum

assumption is appropriate to apply to problems in fluid mechanics. It is defined as

the ratio of the mean free path of the molecules in the flow field to the relevant length

scale of the problem. When dealing with an ideal gas, the Knudsen number reduces

to the expression given by equation 3.1.

Kn =
Ma

ReD

√

γπ

2
(3.1)

A general rule is that when the Knudsen number is much less than 1, the contin-

uum assumption is a good approximation, and when the Knudsen number becomes

large, free-molecular flow is a good approximation. When the Knudsen number ap-

proaches 1 from either side, the flow will behave in a less predictable manner, and

adjustment models are oftentimes imposed to reduce the complexity to free molecular

or continuum flow. The Knudsen number for this case is at 0.19, and is in the region

traditionally called transitional flow. It is still a strongly debated topic on which value
17



the continuum assumption fails at; however it is observed that the error accumulated

by using the continuum assumption for a Knudsen number under 0.01 is at roughly

3%, and is argued here to be an effective model.

3.2 Resolution Study

To guarantee a mesh-independent solution, a resolution study was carried out. Con-

vergence of the solution was verified for both kinematic and thermal measurements.

Ingen was utilized to develop four different mesh resolutions for the simulation to run

on. The refinement of the mesh was measured by the number of faces present on the

simulated particle’s half-circumference. All meshing rules were kept constant other-

wise to keep a fair comparison between cases. The computational cost of each of the

four cases are given in table 3.1, which shows that for accuracy and computational

affordability, the 645 case is the strongest. The simulations were run out to a stopping

time of five hundred nanoseconds and the results were compared, as transient effects

have become a negligible effect at this simulation time.

3.2.1 Particle Kinematics

First the results of the particle’s kinematics were examined. The locations of the

centroids of the mesh elements were tracked through simulation time along with the

area of each mesh element. To determine kinematics of the particle, the position of

the particle had to be defined. This was done with the geometric centroid of the

particle. This variable was plotted against time and is seen in figure 3.1.

xcm(t) =

∑Nelements

j=1 xj(t)Aj(t)
∑Nelements

j=1 Aj(t)
(3.2)

With the centroid of the particle given in simulation time, the other kinematic
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Figure 3.1: Resolution study of particle position in time
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Table 3.1: Resolution study statistics

Case Zones Computer Time (Node Hours) Position Relative Error (%)
101 24627 38.07 67.2
216 98463 312.42 15.1
432 220896 1335.4 3.1
645 391796 2130 –

variables could be computed. The velocity was calculated using a second-order finite

difference approximation of the position and the acceleration was calculated in the

same fashion with the discrete velocity data. With these kinematic variables, the drag

coefficient could be computed. The method of computing this is shown in equation

3.3.

CD(t) =
4ρpdp‖ap‖

3ρa(‖vp‖ − vps)2
(3.3)

The relative error of the drag coefficient is roughly twice that of the position,

because the acceleration decreases only slightly in the duration of the resolution study

simulations.

Clear convergence can be seen in the position results as mesh resolution moves

from the 100 faces per half-diameter case to the 645 one, as illustrated in figure 3.1.

The relative error in the particle position between the coarsest two cases is over 50%,

however the relative error between the most refined cases is less than 5% for position.

This demonstrates the law of diminishing returns, and suggests that numerical error

associated with the length scale of the mesh will not make up the last 10% required

to agree with the models, but is sufficiently close that they are not to be questioned.
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3.2.2 Particle Temperature

After the kinematic measurements of the particle were shown to converge to the same

answer, the values for the particle temperature were checked as well. Temperature

inside the particle is a continuous scalar field in reality, however it is a discontinuous

field in the simulated particle. To avoid the complexities of comparing these discon-

tinuous fields at different resolutions, the volume-averaged particle temperature is

instead used as the figure of merit. To obtain this volume-averaged particle tempera-

ture, the finite volume cells of the particle are treated as infinitesimal area elements.

A numerical volume integral is taken of the particle by using the method of inte-

gration by washers from elementary calculus. This method reduces to the following

formula.

TFLAG(t) =

∫ t

0
2πrAT (x, t)dr

VP
=

∑#ParticleCells
i=1 riAiTi(t)

2
3
r3

(3.4)

This is repeated for every time step in each of the four resolution study simulations,

and the average particle temperature is plotted against simulation time. The results

are shown in figure 3.2. Interestingly, from the coarsest mesh resolution, the average

particle temperature is relatively converged to the same answer. The limiting factor

clearly is set by the particle kinematics agreement, and not by the average particle

temperature.

The 645 faces case was chosen to be the one that was run out in time, due to

the minimal relative error between it and the next case and its reasonably affordable

computational cost.
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Figure 3.2: Resolution study of particle temperature in time
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Figure 3.3: Pseudo-color plots of temperature and velocity
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3.3 Model Comparison

3.3.1 Drag Model

To give a validation for the solution the kinematics converged to, the position of the

simulated particle is compared to the position of a particle that is only subjected

to fluid drag that obeys the model of Parmar et al. This is done by numerically

integrating equation 3.5 to yield the velocity of the position in time.

dvp

dt
=

3CD,Parmar(M,Red)ρa‖vp − vps‖(vp − vps)

4ρpdp
+

Fi,u

ρpVp
(3.5)

Note that equation 3.5 is a second order ordinary differential equation because

velocity is the total derivative of position with respect to time. The inviscid unsteady

force, Fi, u, is the inviscid unsteady force and is only effective when the shock is

passing over the particle. This was implemented after it was found that ignoring this

parameter caused a disagreement in position larger than 5%. The model used for this

force comes from Parmar et al. [15]. While this force does bring the model in closer

alignment with the simulations, the viscous unsteady force is clearly one that has a

large effect as well. Because this force will not fit into a one-dimensional model, it

could not be implemented unfortunately.

This numerical integration is carried out by decomposing the equation into two

first order ODE’s and integrating with the Runge-Kutta based ODE solver built into

Python. The comparison of the model to the simulated particle is shown in figure 3.4.

The simulation is seen to over-predict the drag coefficient given by both the models

of Clift-Gauvin and Parmar by a small amount. Both models are seen to agree with

one another within 5%. The agreement of the models suggests that compressibility

for the given Mach number of roughly 0.4 is not a strong factor, which is important

in the validation of the heat transfer model, as compressibility is not considered in its
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Figure 3.4: Particle position: Parmar and Clift-Gauvin model comparison to simula-
tion

parameter space. It has previously been hypothesized that the motion of the particle

has an effect on the drag experienced, as models have been built with data taken from

stationary particles.

3.3.2 Heat Transfer Model

To validate the thermal conduction heat transfer solver in FLAG, the temperature

values returned from the simulation were compared to those given by a heat transfer

model. Compressible heat transfer models of a sphere exposed to external flow are

not as well-validated as incompressible models. The model selected for comparison

was the one proposed by Whitaker [9]. This model is valid when the viscosity of
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Figure 3.5: Particle acceleration: Parmar and Clift-Gauvin model comparison to
simulation
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the fluid at the surface of the particle is lesser than the viscosity at the free-stream.

This suggests that the model is only appropriate when the free-stream is at a higher

temperature with respect to the particle, as Sutherland’s model for the viscosity of

air increases monotonically with temperature. To test FLAG against this model, the

first law of thermodynamics is applied with the particle as the control volume. It

is assumed that work done to deform the particle, while non-zero in the simulation

and reality, has a negligible effect. It is also assumed that the thermal properties

of the particle are not temperature dependent, which is assumed by both the model

and FLAG. Thermal properties for the convection correlation are computed with a

quadratic interpolating polynomial with tabulated values for air. The Biot number

is computed to test the validity of lumped capacitance, but is shown to be much too

high at 0.6 to give an acceptable answer. To combat this issue, the particle is divided

into concentric shells, such that each shell is isothermal with itself, i.e. a lumped

capacitance, but not with neighboring shells. This method gives a set of coupled

first-order ordinary differential equations, given by equations 3.6, 3.7, and 3.8, that

must be solved simultaneously. This is done numerically in a fashion similar to the

numerical integration of the particle’s rigid-body dynamics equation [16].

dT1

dt
=

3α

r31

(

T2 − T1

1
r1
− 1

r2

)

(3.6)

dTi

dt
=

3α

r3i − r3i−1

∗

(

Ti+1 − Ti

1
ri
− 1

ri+1

)

+
3α

r3i − r3i−1

(

Ti−1 − Ti

1
ri−1

− 1
ri

) (3.7)
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Figure 3.6: Whitaker Heat Transfer model comparison to simulation

dTN

dt
=

3α

r3N − r3N−1

(

TN−1 − TN

1
rN−1

+ 1
rN

)

+
3hr2N

ρc
(

r3N − r3N−1

) (Tinf − TN)

(3.8)

Convergence to the final answer occurs at about 200 subdividing shells. As pa-

rameters are matched, and convergence of the lumped capacitance method of shells

is realized, the convection correlation is isolated as the model to test FLAG against.

This correlation is compared to the values of the FLAG particle in simulation time.

Large temperature gradients appear in the particle through time, as seen in Figure

3.3. This fact is not surprising, given the computed Biot number of 0.6. After eval-
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uating the average temperature of the particle through simulation time, the value is

compared to that of the one-dimensional model. It is seen that the model is in good

agreement with the data provided in FLAG. Given that compressibility is not taken

into consideration with the model, and that heat transfer correlation of Whitaker has

experimental scatter of 30% [9], the conduction heat transfer physics in FLAG is well

within the range of validity for the model.
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Chapter 4

”What Went Wrong”

4.1 Sphericity

In the pursuit of finding the best comparison of simulations to experiments, a few

methods were attempted. First, particle sizes were searched for using a Hough trans-

form algorithm applied to scanning electron microscopy (SEM) images, provided by

the experimental team. This method searched over dozens of SEM images of different

length scales to build a statistical distribution for the particle diameters. It was found

after searching over these images that the distribution appeared to be log-normal with

an expected value of roughly 4 μm for the diameter, as can be seen in figure 4.1. This

is not surprising, as the particles were advertised as having 4 μm for their diameters.

However, the observed kinematics strongly disagreed with this fact.

When using the drag models previously mentioned, it is implied that the particles

are perfectly spherical, which is usually an effective enough assumption at this length

scale. This is due to surface tension for liquid droplets and the frequent enough

collisions to wear down anisotropic imperfections for solid particles. However, because

particle sphericity is known to be an effect on the drag, sphericity was explored as a
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Figure 4.1: Particle size distribution
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possible parameter that would explain the disagreement. To do this, the sphericity

for each of the particles was computed from the SEM images. The images were

two dimensional, so information about each of the particle’s third dimension was

unknown. With this fact, the conservative assumption that the third dimension’s

radius matched the major radius of the particle in the image was made. This was

done so that if it was determined that the particles were not spherical, it would be

because of data that was able to be proved with information from the images. The

sphericity of an object is generally implicitly understood as Wadell’s definition of the

parameter, which is the ratio of the surface area of the object to the surface area of

a sphere with the same volume as the object.

Ψ =
π1/3(6Vp)

2/3

Ap

(4.1)

Assuming that the manner in which the particles deviated from a sphere was in the

shape of an ellipsoid, the SEM images were used again. The circle-finding algorithm

used previously finds the location of the circles in an image effectively by minimizing a

residual of the intensity gradient and the contour of the circle by adjusting the center

and radius of the circle. This residual was plotted, and a fast Fourier transform was

taken of the signal. A sample signal may be seen in figure 4.2. The amplitude of the

first mode of the signal may be regarded as the difference in between the major and

the minor axes of the ellipsoidal-assumed particle. With the major and minor radii

of the particle known, the Wadell sphericity could be computed. The surface area

of an ellipsoid is given in terms of an ellipsoidal integral, which are not analytically

solvable but do have known numerical solutions. The expressions for the volume and

surface area of a representative ellipsoidal particle are given as follows.

Vp =
4

3
πa2b (4.2)
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Figure 4.2: Residual of computed circle and particle

Ap = 2πb2 +
2πa2

sin(φ)
(E(φ, 1)sin2(φ) + F (φ, 1)cos2(φ))

φ = cos−1(
b

a
)

E(φ, k) =

∫ φ

0

√

1− k2sin2(θ)dθ

F (φ, k) =

∫ φ

0

dθ
√

1− k2sin2(θ)

(4.3)

Here, the major and minor radii are given by a and b respectively. This process

was repeated for as many particles that had enough resolution to reliably return

a signal, and it was found with the previously described process that the average

sphericity of the particles was roughly 99.96%. It has been observed that effects of

spherical asymmetry on particle drag do not show up until rougly 95% [17], and to
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Figure 4.3: Particle Sphericity
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achieve this value with an ellipsoid, the minor radius would have to be just over 1 μm,

which is clearly not the case for the particles. This principle may be seen in figure

4.3. After this process of computing the sphericity of the particles, it was determined

that it would not be a parameter that would even approach an explanation for the

drag models’ disagreement.

4.2 Equivalent Particle Size

After it was determined that the sphericity of the particle would not be capable of ex-

plaining the deviation of the measured particle kinematics from the models’ predition,

a solution for the equivalent particle diameter that would match experiments and the

models was made. To do this, the drag model of Parmar was utilized to compute

the drag coefficient of the particle as a function of the Reynold’s and Mach numbers.

Using the Maxey-Riley equation, and assuming only the forces of quasi-steady and

inviscid-unsteady drags acting on the particle, a nonlinear first order ordinary dif-

ferential equation appears, and is given by equation 3.5. This equation relates the

particle velocity, vP, to the post-shock velocity vPS, the post-shock air density ρa,

the post-shock Mach number M, the particle density ρP, the particle diameter dP, the

particle Reynold’s number Re d, and the inviscid unsteady force F i, u. This equation

can be integrated in time numerically to yield kinematics of the particle, given flow

conditions and properties of the particle. Rather than solving for the velocity of the

particle as a function of time, the particle diameter may be treated as the variable if

given a velocity at a post-shock time. The diameter can be solved for with a Newton-

Raphson style method. In this work, the numerical time integration wass done with

a variable time-step Runge-Kutta method, and the numerical solution for particle

diameter is done with a bisection method [16]. The particles have been determined

to be nylon [10], fixing their density at 1140 kg per cubic meter. This information,
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coupled with the post shock properties of the flow given in table 2.1, led to the con-

clusion that the particles must have had a diameter of 0.62 micrometers to agree with

the model proposed by Parmar et al. As mentioned earlier, the Knudsen number is

the non-dimensional parameter that is used to determine whether or not the contin-

uum model with be effective in describing flow. Given the laboratory conditions at

Los Alamos, New Mexico and the particle size calculated, the Knudsen number is

computed as 0.1. This is well outside of the regime of continuum flow, and because

Parmar’s model is based on continuum flow, a correction factor must be implemented

to adjust for this. The Cunningham correction factor, which is based on a reconcil-

liation of continuum flow and the kinetic theory of gases [18], was implemented into

the particle size calculation procedure.

C = 1 +
2λ

d
(1.257 + 0.4e−0.55d/λ) (4.4)

It is used by first computing the continuum drag coefficient and then dividing

by the correction factor. When progressing from continuum flow to slip flow, the

drag is observed to decrease. This is due to the fact that the no slip condition is

eliminated, and the velocity gradients at the particle surface decrease, and with it,

the shear stress. After accounting for this effect, the equivalent particle diameter

was calculated as 0.52 μm. This information was provided to the experimentalists,

but a simulation based on continuum equations would be inappropriate in this flow

regime. Chronologically, from here, the particle was decided to be simulated as a 4μm

diameter nylon particle, as the supplier advertized, and compare to models and the

experimental kinematics.
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Chapter 5

Conclusions

The viscous and heat transfer physics solvers of the hydrocode FLAG have been

shown to agree with validated models in their respective fields. Because more relevant

physics have been considered in this work, such as the material response and dynamics

of the particle from the shock, and because particle forces have been shown to agree

with drag models for a fixed particle, it may be concluded that the motion of the

particle may account for up to 10% error in location of the particle. Drag and thermal

models continue to agree reasonably well with particle kinematics, even as the particle

accelerates in the flow field. With this agreement seen, a possible explanation is that

the particles being used in the experiments were smaller than previously predicted.

We look forward to future experiments from the Extreme Fluids team.
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Appendix A

Empirical Model Computation

A.1 Kinematic Validation

from scipy.integrate import odeint

from scipy.integrate import cumtrapz

import numpy as np

import matplotlib.pyplot as plt

plt.rcParams[”font.family”] = ”Times New Roman”

plt.rcParams[”font.size”] = ”18”

plt.rcParams[”figure.autolayout”] = True

def CdParmar(Re, M):

if (M ¡= 1):

xi = 0

C = np.zeros([3, 1])

f = np.zeros([3, 1])

C[0] = 6.48

C[1] = 9.28
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C[2] = 12.21

f[0] = -1.884 + 8.422*M - 13.70*M**2 + 8.162*M**3

f[1] = -2.228 + 10.35*M - 16.96*M**2 + 9.840*M**3

f[2] = 4.362 - 16.91*M + 19.84*M**2 - 6.296*M**3

for ii in range(np.size(f)):

P = 1

for jj in range(np.size(C)):

if (ii != jj):

P *= (np.log(Re) - C[jj])/(C[ii] - C[jj])

xi += f[ii]*P

CDMcr = 24/Re*(1 + 0.15*Re**0.684) + 0.513*(1+483/Re**0.669)**(-1)

CDM1 = 24/Re*(1 + 0.118*(Re**0.813)) + 0.69*(1 + 3550/(Re**0.793))**(-1)

CD = CDMcr + (CDM1-CDMcr)*xi

return CD

if (M ¿ 1):

xi = 0

C = np.zeros([3, 1])

f = np.zeros([3, 1])

C[0] = 6.48

C[1] = 8.93

C[2] = 12.21

f[0] = -2.963 + 4.392*M - 1.169*M**2 - 0.027*M**3 - 0.233*np.exp((1-M)/0.011)

f[1] = -6.617 + 12.11*M - 6.501*M**2 + 1.182*M**3 - 0.174*np.exp(100*(1-M))

f[2] = -5.866 + 11.57*M - 6.665*M**2 + 1.312*M**3 - 0.350*np.exp((1-M)/0.012)

for ii in range(np.size(f)):

P = 1

for jj in range(np.size(C)):
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if (ii != jj):

P *= (np.log(Re) - C[jj])/(C[ii] - C[jj])

xi += f[ii]*P

CDM1 = 24/Re*(1 + 0.118*(Re**0.813)) + 0.69*(1 + 3550/(Re**0.793))**(-1)

CDM175 = 24/Re*(1 + 0.107*(Re**0.867)) + 0.646*(1 + 861/(Re**0.634))**(-1)

CD = CDM1 + (CDM175-CDM1)*xi

return CD

def CdCG(Re):

return 24/Re*(1 + 0.15*Re**0.687) + 0.42*(1+42500/Re**1.16)**(-1)

def dvdtParmar(v, t):

rhoamb = 1.397406280968033E-3

rhop = 1.140

r = 2.0E-4

mu = 2.086E-4

ups = 15222.09907425806

Re = 2*rhoamb*r*np.sqrt((ups-v)**2)/mu

M = np.sqrt(((ups-v)/100)**2)/np.sqrt(1.401*287.06*351.3132002748754)

return 3*CdParmar(Re, M)*rhoamb*(v-ups)**2/(8*rhop*r)

def dvdtCG(v, t):

rhoamb = 1.397406280968033E-3

rhop = 1.140

r = 2.0E-4

mu = 2.086E-4

ups = 15222.09907425806

Re = 2*rhoamb*r*np.sqrt((ups-v)**2)/mu

M = np.sqrt(((ups-v)/100)**2)/np.sqrt(1.401*287.06*351.3132002748754)

return 3*CdCG(Re)*rhoamb*(v-ups)**2/(8*rhop*r)
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t = np.linspace(0, 0.000002, 100)

v0 = 0

vParmar = odeint(dvdtParmar, v0, t)

vCG = odeint(dvdtCG, v0, t)

cdParmar = np.zeros(np.size(t))

cdCG = np.zeros(np.size(t))

for ii in range(np.size(t)):

rhoamb = 1.397406280968033E-3

rhop = 1.140

r = 2.0E-4

mu = 2.086E-4

ups = 15222.09907425806

Re = 2*rhoamb*r*np.sqrt((ups-vParmar[ii])**2)/mu

M= np.sqrt(((ups-vParmar[ii])/100)**2)/np.sqrt(1.401*287.06*351.3132002748754)

cdParmar[ii] = CdParmar(Re, M)

Re = 2*rhoamb*r*np.sqrt((ups-vCG[ii])**2)/mu

cdCG[ii] = CdCG(Re)

xParmar = np.array([0])

xCG = np.array([0])

xParmar = np.append(xParmar, cumtrapz(vParmar[:,0], x = t))

xCG = np.append(xCG, cumtrapz(vCG[:,0], x = t))

aParmar = np.gradient(vParmar[:,0], t, edgeorder = 2)

aCG = np.gradient(vCG[:,0], t, edgeorder = 2)

xFlag216 = np.loadtxt(’Pos216Faces.csv’, usecols=[1], skiprows=1, delimiter=’,

’)

tFlag216 = np.loadtxt(’Pos216Faces.csv’, usecols=[0], skiprows=1, delimiter=’, ’)

xFlag432 = np.loadtxt(’Pos432Faces.csv’, usecols=[1], skiprows=1, delimiter=’,
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’)

tFlag432 = np.loadtxt(’Pos432Faces.csv’, usecols=[0], skiprows=1, delimiter=’, ’)

vFlag216 = np.gradient(xFlag216, tFlag216, edgeorder = 2)

vFlag432 = np.gradient(xFlag432, tFlag432, edgeorder = 2)

aFlag216 = np.gradient(vFlag216, tFlag216, edgeorder = 2)

aFlag432 = np.gradient(vFlag432, tFlag432, edgeorder = 2)

cdFlag216 = 8*2.6149*0.5E-4*aFlag216/(3*1.397406280968033E-3*(vFlag216 - 15222.09907425806)**2)

cdFlag432 = 8*2.6149*0.5E-4*aFlag432/(3*1.397406280968033E-3*(vFlag432 - 15222.09907425806)**2)

plt.plot(tFlag216*1E6, aFlag216, label = ’FLAG - 216 Faces’, color=’g’)

plt.plot(tFlag432*1E6, aFlag432, label = ’FLAG - 432 Faces’, color=’c’)

plt.xlabel(r’Time (µs)’)

plt.ylabel(r’Acceleration ( cm
s2
)’)

plt.grid()

plt.legend(loc = 0)

plt.savefig(’resolutionStudyAcc.png’)

plt.close()

plt.plot(tFlag216*1E6, vFlag216, label = ’FLAG - 216 Faces’, color=’g’)

plt.plot(tFlag432*1E6, vFlag432, label = ’FLAG - 432 Faces’, color=’c’)

plt.xlabel(r’Time (µs)’)

plt.ylabel(r’Velocity ( cm
s
)’)

plt.grid()

plt.legend(loc = 0)

plt.savefig(’resolutionStudyVel.png’)

plt.close()

plt.plot(tFlag216*1E6, xFlag216, label = ’FLAG - 216 Faces’, color=’g’)

plt.plot(tFlag432*1E6, xFlag432, label = ’FLAG - 432 Faces’, color=’c’)

plt.xlabel(r’Time (µs)’)
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plt.ylabel(r’Position (µm)’)

plt.grid()

plt.legend(loc = 0)

plt.savefig(’resolutionStudyPos.png’)

plt.close()

plt.plot(tFlag216*1E6, cdFlag216, label = ’FLAG - 216 Faces’, color=’g’)

plt.plot(tFlag432*1E6, cdFlag432, label = ’FLAG - 432 Faces’, color=’c’)

plt.xlabel(r’Time (µs)’)

plt.ylabel(r’CD’)

plt.grid()

plt.legend(loc=’best’)

plt.savefig(’resolutionStudyCd.png’)

plt.close()

A.2 Heat Transfer Validation

import numpy as np

from scipy.integrate import odeint

from scipy.interpolate import interp1d

import matplotlib.pyplot as plt

import time

plt.rcParams[”font.family”] = ”Times New Roman”

plt.rcParams[”font.size”] = ”17”

plt.rcParams[”figure.autolayout”] = True

def dTdt(tempPart, t, N, r, k, dPart, Re, Pr, mu, M, rhoPart, cpPart, kPart,

alphaPart, tempInf):

dTdt = np.zeros(N)
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hBar = k(tempInf)/dPart*(2 + (0.4*Re**(1/2) + 0.06*Re**(2/3))*0.71**0.4*(mu(tempInf)/mu(tempP

- 1]))**(1/4))

dTdt[0] = 3*alphaPart*((tempPart[1] - tempPart[0])/(1/r[0] - 1/r[1]))/(r[1]**3 -

r[0]**3)

for ii in range(1, N-1):

dTdt[ii] = 3*alphaPart*((tempPart[ii + 1] - tempPart[ii])/(1/r[ii] - 1/r[ii + 1]) +

(tempPart[ii - 1] - tempPart[ii])/(1/r[ii - 1] - 1/r[ii]))/(r[ii]**3 - r[ii - 1]**3)

dTdt[N - 1] = 3*alphaPart*((tempPart[N - 2] - tempPart[N - 1])/(1/r[N - 2] -

1/r[N - 1]))/(r[N - 1]**3 - r[N - 2]**3) + 3*hBar*r[N - 1]**2*(tempInf - tempPart[N

- 1])/(rhoPart*cpPart*(r[N - 1]**3 - r[N - 2]**3))

return dTdt

tempAirProp = np.loadtxt(”airProperties.csv”, usecols=(0,), skiprows=1, delim-

iter=”,”)

muAirProp = np.loadtxt(”airProperties.csv”, usecols=(4,), skiprows=1, delim-

iter=”,”)

PrAirProp = np.loadtxt(”airProperties.csv”, usecols=(6,), skiprows=1, delimiter=”,”)

kAirProp = np.loadtxt(”airProperties.csv”, usecols=(5,), skiprows=1, delimiter=”,”)

mu = interp1d(tempAirProp, muAirProp, kind=’quadratic’)

Pr = interp1d(tempAirProp, PrAirProp, kind=’quadratic’)

k = interp1d(tempAirProp, kAirProp, kind=’quadratic’)

t216 = np.loadtxt(’temp216Faces.csv’, usecols=(0,), skiprows=1, delimiter = ’,’)

T216 = np.loadtxt(’temp216Faces.csv’, usecols=(1,), skiprows=1, delimiter = ’,’)

t432 = np.loadtxt(’temp432Faces.csv’, usecols=(0,), skiprows=1, delimiter = ’,’)

T432 = np.loadtxt(’temp432Faces.csv’, usecols=(1,), skiprows=1, delimiter = ’,’)

N = 100

nTime = 100

dPart = 4.0E-6
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r = np.linspace(1.0E-15, dPart/2, N)

rhoPart = 1140.0

cpPart = 3517.0

kPart = 0.25

alphaPart = kPart/(rhoPart*cpPart)

uInf = 152.2

y = 1.402

R0 = 8314.46261815324

R = R0/28.97

rhoInf = 1.397406280968033

tempInf = 351.3132002748754

M = uInf/np.sqrt(y*R*tempInf)

Re = (uInf*dPart*rhoInf/mu(tempInf))

t = np.linspace(0.0, 5.0E-7, nTime)

T0 = 294.8*np.ones(N)

tock = time.time()

T = odeint(dTdt, T0, t, args=(N, r, k, dPart, Re, Pr, mu, M, rhoPart, cpPart,

kPart, alphaPart, tempInf))

tick = time.time()

print(tick-tock)

tempAvg = np.zeros(nTime)

for ii in range(nTime):

sum = 0

for jj in range(1, N):

sum += (T[ii][jj] + T[ii][jj - 1])*(r[jj]**3 - r[jj - 1]**3)/2.0

tempAvg[ii] = sum/(dPart/2)**3

plt.plot(t*1.0E6, tempAvg, label=’Whitaker Correlation’, color=’b’)
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plt.plot(t216*1.0E6, T216, label=’FLAG - 216 Faces’)

plt.plot(t432*1.0E6, T432, label=’FLAG - 432 Faces’)

plt.grid()

plt.legend(loc=’best’)

plt.xlabel(r’Time (µs)’)

plt.ylabel(’Temperature (K)’)

plt.title(’Average Temperature of Particle against Time’)

plt.savefig(’modelTemp.png’)

plt.close()

plt.plot(t*1.0E6, tempAvg, label=’Whitaker Correlation’)

plt.plot(t216*1.0E6, T216, label=’FLAG - 216 Faces’, color=’g’)

plt.plot(t432*1.0E6, T432, label=’FLAG - 432 Faces’, color=’g’)

plt.grid()

plt.legend(loc=’best’)

plt.xlabel(r’Time (µs)’)

plt.ylabel(’Temperature (K)’)

plt.savefig(’resolutionStudyTemp.png’)

plt.close()

A.3 Particle Size calculation

from scipy.optimize import bisect

from scipy.integrate import odeint

from scipy.integrate import trapz

import numpy as np

import matplotlib.pyplot as plt

def Cd(Re, M):
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if (M ¡= 1):

xi = 0

C = np.zeros([3, 1])

f = np.zeros([3, 1])

C[0] = 6.48

C[1] = 9.28

C[2] = 12.21

f[0] = -1.884 + 8.422*M - 13.70*M**2 + 8.162*M**3

f[1] = -2.228 + 10.35*M - 16.96*M**2 + 9.840*M**3

f[2] = 4.362 - 16.91*M + 19.84*M**2 - 6.296*M**3

for jj in range(np.size(f)):

P = 1

for kk in range(np.size(C)):

if (jj != kk):

P *= (np.log(Re) - C[kk])/(C[jj] - C[kk])

xi += f[jj]*P

CDMcr = 24/Re*(1 + 0.15*Re**0.684) + 0.513*(1+483/Re**0.669)**(-1)

CDM1 = 24/Re*(1 + 0.118*(Re**0.813)) + 0.69*(1 + 3550/(Re**0.793))**(-1)

CD = CDMcr + (CDM1-CDMcr)*xi

return CD

if (M ¿ 1):

xi = 0

C = np.zeros([3, 1])

f = np.zeros([3, 1])

C[0] = 6.48

C[1] = 8.93

C[2] = 12.21
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f[0] = -2.963 + 4.392*M - 1.169*M**2 - 0.027*M**3 - 0.233*np.exp((1-M)/0.011)

f[1] = -6.617 + 12.11*M - 6.501*M**2 + 1.182*M**3 - 0.174*np.exp(100*(1-M))

f[2] = -5.866 + 11.57*M - 6.665*M**2 + 1.312*M**3 - 0.350*np.exp((1-M)/0.012)

for jj in range(np.size(f)):

P = 1

for kk in range(np.size(C)):

if (jj != kk):

P *= (np.log(Re) - C[kk])/(C[jj] - C[kk])

xi += f[jj]*P

CDM1 = 24/Re*(1 + 0.118*(Re**0.813)) + 0.69*(1 + 3550/(Re**0.793))**(-1)

CDM175 = 24/Re*(1 + 0.107*(Re**0.867)) + 0.646*(1 + 861/(Re**0.634))**(-1)

CD = CDM1 + (CDM175-CDM1)*xi

return CD

def dvdt(v, t, r, l):

rhoamb = 1.397406280968033E-3

rhop = 1.14

mu = 2.086E-4

ups = 15222.09907425806

Re = 2*rhoamb*r*np.sqrt((ups-v)**2)/mu

M = np.sqrt(((ups-v)/100)**2)/np.sqrt(1.401*287.06*351.3132002748754)

C = 1 + l/r*(1.257 + 0.4*np.exp(-1.1*r/l))

return 3*Cd(Re, M)*rhoamb*(v - ups)**2/(8*C*rhop*r)

def fun(x, finalPosMeas, l):

t = np.linspace(0.0, 0.000002, 500)

v0 = 0

xdum = 0

v = odeint(dvdt, v0, t, args=(x/10000, l))
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finalPosCalc = trapz(v[:, 0], x = t)

return (finalPosCalc - finalPosMeas/10000)

Ma = 152.2209907425806/376.00646119629

mu = 20.8E-6

rho = 1.397406280968033

m = 28.97/(1000*6.0221409E23)

kBoltz = 1.38064900E-23

T = 351.3132002748754

l = mu/rho*np.sqrt(np.pi*m/(2*kBoltz*T))

sol = bisect(fun, 0.1, 0.7, args = (176.2, l*100))

print(’d = ’+str(sol*2)+’um’)
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